Week 2 - Wednesday

Last time

- What did we talk about last time?
- C literals
- Binary representation
- Math library

Questions?

Project 1

Quotes

Unity can only be manifested by the Binary. Unity itself and the idea of Unity are already two.

Buddha

Math Library

Math library

Function	Result	Function	Result
cos(double theta)	Cosine of theta	exp(double x)	e×
sin(double theta)	Sine of theta	log(double x)	Natural logarithm of ${f x}$
tan(double theta)	Tangent of theta	log10(double x)	Common logarithm of x
acos(double x)	Arc cosine of \mathbf{x}	<pre>pow(double base, double exponent)</pre>	Raise base to power exponent
asin(double x)	Arc sine of x	<pre>sqrt(double x)</pre>	Square root of x
atan(double x)	Arc tangent of x	ceil(double x)	Round up value of x
atan2(double y, double x)	Arc tangent of y/x	<pre>floor(double x)</pre>	Round down value of ${f x}$
<pre>fabs(double x)</pre>	Absolute value of ${f x}$	fmod(double value, double divisor)	Remainder of dividing value by divisor

It doesn't work!

- Just using #include gives the headers for math functions, not the actual code
- You must link the math library with flag -lm

> gcc hypotenuse.c -o hypotenuse -lm

- Now, how are you supposed to know that?
- > man 3 sqrt

- You are sitting at the origin
- There's a hyperspace ghost demon at location (x, y)
- Write a program to determine the angle to fire your Ccontrolled proton accelerator in order to remove the deadly menace

Single Character I/O

getchar()

- We haven't talked about any input in C yet
- To read the next character from input, you can use the getchar() function
- It will return the value of the next character (as an int) or -1 if the end of the file is reached
 - Store the value as an int first to check to see if the end of the file has been reached
 - If not, you can then store it as a char

```
int value = getchar();
if (value == -1)
    printf("End of file!");
```

putchar()

- putchar() is the output equivalent of getchar()
- It outputs a single character at a time
- You could use printf() with the %c formatter instead, but putchar() can be more convenient for single characters

```
char letter = 's';
putchar('q');
putchar(letter);
```

Input example

- Let's write a function that reads input, character by character, and returns the equivalent int value
 - For example, the characters '4', '5', '1', and ' ' would be interpreted as the int 451
- We'll read char values until we get a space, newline, or EOF
- Each time, we multiply our sum by 10 and then add the numerical value of the input
 - We have to subtract '0' from the input, otherwise we'll get the character values of the digits o through 9 (which are not o through 9)

Note: a function like this will be provided for you for some labs

Ticket Out the Door

Upcoming

Next time...

- sizeof and const
- System limits
- Bitwise operations

Reminders

- Keep reading K&R chapter 2
- Read LPI chapter 11
- Keep working on Project 1
 - Due Friday by midnight!